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Abstract		

An Independent Evaluation of Frozen Precipitation from the WRF model and PRISM in the 

Olympic Mountains for WY 2015 and 2016 

 

William Ryan Currier  
 

Chair of the Supervisory Committee: 
Professor Jessica Lundquist 

Civil and Environmental Engineering 
 

Estimates of precipitation from the Weather Research and Forecasting Model (WRF) and the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) are widely used in 

regions of complex terrain to obtain spatially consistent precipitation data. We evaluated the 

ability of both WRF and PRISM to estimate frozen precipitation using a hydrologic model 

(SUMMA) and a unique set of spatiotemporal snow depth observations collected for the 

OLYMPEX ground validation campaign during water years (WY) 2015 and 2016. We found that 

when WRF precipitation was partitioned with the commonly used linear-partitioning scheme 

based on wet bulb temperature (WRFLP) that its estimation of frozen precipitation was biased 

low on average. However, we found that when SUMMA was allowed to partition WRF total 

precipitation based on WRF’s microphysical scheme (WRFMPP), simulations of snow depth were 

near equal or better than PRISM. WRFMPP and PRISM had unbiased estimates of snow depth in 

WY 2016, but both simulated errors in snow depth of up to ~ 1 m (~40-50 cm of SWE) on an 

annual basis at a few locations. In the winter of WY 2015, which was abnormally warm by about 

2.2°C (1 November – 31 March), PRISM was unbiased, and WRFMPP over predicted annual 

snowfall by ~ 20% on average but showed a similar mean absolute difference to PRISM. Lastly, 

we hypothesize that PRISM’s rain shadow has too sharp of a gradient between the windward and 
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leeward side of the Olympic Mountains and that the coastal proximity and topographic position 

weights in PRISM may shift estimates of total annual precipitation too far west of the crest. 
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Chapter I 
 

An Independent Evaluation of Frozen Precipitation from the WRF model and PRISM in the 

Olympic Mountains between WY 2015 and 2016
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1. Introduction: 
 

Quantifying the amount of precipitation that falls as snow in complex terrain, where we have 
limited observations, remains a challenge. Methods that produce spatially-distributed 
precipitation estimates range from physically-based, numerical weather models, such as the 
Weather Research and Forecasting model (WRF) (Skamarock et al. 2008), to statistical models 
that spatially interpolate surface precipitation observations. A widely-used statistical model is the 
Parameter-elevation Relationships on Independent Slopes Model (PRISM), which is based on 
statistical regressions that account for topography and coastal proximity (Daly et al. 2008). 
PRISM has been widely used to spatially interpolate observations of precipitation to a grid in the 
following spatiotemporal datasets: Hamlet and Lettenmaier (2005), Maurer et al. (2002), 
NLDAS-2, Hamlet et al. (2010), Livneh et al. (2013), and NCEP stage IV. Previous studies have 
found that in complex terrain there is significant uncertainty in the estimation of spatially-
distributed precipitation (Gutmann et al. 2012, Livneh et al. 2014, Henn et al. 2016) due to a 
sparse network of gauges (Lundquist et al. 2003) and observational uncertainty at the gauge 
itself (Goodison et al. 1998, Rasmussen et al. 2012). WRF or PRISM are often used in 
hydrologic models to influence decisions regarding avalanche control, reservoir storage, and 
flood forecasting. Therefore, uncertainties in the estimation of spatially-distributed precipitation 
directly translate into uncertainties in forecasts for agriculture, transportation, hydroelectric 
power, and recreation. 

The Olympic Mountain Experiment (OLYMPEX) was a ground validation campaign for the 
NASA Global Precipitation Measurement Mission (GPM), on the Olympic Peninsula in 
Washington, USA (Houze et al. 2016), and offered a unique opportunity to compare the 
performance of WRF and PRISM in a maritime mountain environment. While the Olympic 
Mountains have been the focus location of previous dynamical (Anders et al. 2007, Minder et al. 
2008) and statistical (Daly et al. 2008) precipitation studies before, its historical lack of mountain 
observations allow us to estimate how both approaches work at higher mountain elevations 
where data were not previously available for model training and development. 

For the OLYMPEX campaign, we collected a unique set of independent snow depth 
observations (using cameras, poles, and LiDAR, described in section 3) to investigate the ability 
of a high-resolution (4/3 km) atmospheric model simulation (WRF, Mass et al. 2003) and 
PRISM to determine frozen precipitation, both annually (water years 2015 and 2016) and during 
individual storm events (focused on the OLYMPEX intensive observational period from 
November-December 2015).  

This chapter is organized as follows: Section 2 provides background information on previous 
studies that have evaluated WRF and PRISM. Section 3 describes the location of this study and 
the data used. Section 4 explains our methodology. Section 5 presents the results, and section 6 
discusses key model sensitivities within this maritime environment, including issues with 
comparing simulations of snow depth at a point to different spatial areas. Finally, in section 7 we 
offer our conclusions. 

 
2. Background:   
 
a. Prior studies of WRF and PRISM 
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WRF and PRISM are examples of two different approaches to provide spatially consistent 
estimates of precipitation. WRF is an atmospheric model that combines atmospheric dynamics 
with a cloud microphysical scheme, which parameterizes processes that control the formation, 
growth, and fallout of precipitation from clouds.  WRF does not require surface gauge 
observations and represents changing precipitation distributions in different types of storms but 
is sensitive to boundary conditions and the chosen microphysical scheme.  Microphysical 
schemes are an active area of research, particularly ice microphysics, which account for the 
diffusional growth, aggregation, riming, melting, and freezing of hydrometeors above the 
surface. In contrast, PRISM is a gridded climatology map, which estimates the variability in 
precipitation due to topography and coastal proximity. To obtain a spatiotemporal dataset, the 
climatology is commonly used with total precipitation observations (solid and liquid) at the 
surface from nearby gauges to spatially interpolate total precipitation between observations. 
Therefore, PRISM-derived precipitation in spatiotemporal datasets is highly dependent on the 
presence and quality of nearby precipitation observations.  Due to its basis in statistical 
climatology, it does not accurately represent storm spatial patterns that differ from the norm but 
generally does provide an unbiased estimator of the sum over multiple storms.  

Previous evaluations of WRF and PRISM in the western United States have reached 
conclusions varying with time and location.  Wayand et al. (2013) used observations of 
streamflow and a set of independent precipitation gauges in the American River Basin, CA to 
find that the best estimate of precipitation depended on the year. However, in general, the WRF 
model performed as well as PRISM, which had the advantage of using most of the available 
precipitation gauges in its model development. Gutmann et al. (2012) showed in a regional 
analysis over Colorado that it was common for differences between PRISM and WRF to occur in 
areas that were furthest away from the observations of precipitation. Gutmann et al. (2012) also 
showed that winter precipitation estimated by the PRISM climatology was biased about 150% 
when compared to an observation that was not used in the development of PRISM. Gauge under 
catch at this location may exacerbate this difference; however, WRF run at 2 km-resolution 
differed only by ~20% when compared to the independent observations. 

 Lundquist et al. (2015) used observations from over 100 snow pillows in California’s Sierra 
Nevada Mountains to show that gridded datasets, derived largely from PRISM, performed well 
over a 20-year period. Precipitation estimates resulted in a median ±10% error on a total water 
year (WY) time-scale. While these results are promising, the median error across all locations 
could exceed 50% for individual storms. These large differences were associated with storms 
that brought unusual synoptic conditions. Therefore, the authors suggested the use of a 
dynamical model during these events. 

Daly et al. (2008) used United States Geological Survey (USGS) streamflow gauges from 
eight basins on the windward and leeward slopes of the Olympic Mountains along with an 
estimate of evapotranspiration to evaluate PRISM against other statistical precipitation models, 
including Daymet (Thornton et al. 1997) and Worldclim (Hijmans et al. 2005). Despite having 
no observations in the core mountain regions of the Olympic Mountains during the development 
of these products, Daly et al. (2008) found that both PRISM and Daymet could estimate annual 
mean basin precipitation well on the windward slopes. However, on the leeward slopes, Daymet 
and PRISM estimates diverged. Daymet overestimated mean annual basin precipitation on the 
leeward side because it was not able to replicate the non-monotonic relationship between 
precipitation and elevation. On the windward side, where both of these products agreed on mean 
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annual basin precipitation, the spatial interpolation dependence on topographic facets and coastal 
proximity used in PRISM causes spatial differences between PRISM and Daymet.  

Dynamical models at relatively high resolution have previously been evaluated in the 
Olympic Mountains and have shown the capability of producing small-scale orographic 
precipitation enhancement when compared to a network of rain gauges between 50 and 900 m 
(Anders et al. 2007, Minder et al. 2008). Both studies revealed that a high-resolution dynamical 
model can capture small-scale variability and precipitation rates well on an annual or seasonal 
time-scale; however, individual events contained significant errors. This may pose a problem 
when simulating snow in this environment as significant over- or underpredictions for large 
events may result in an over- or under-accumulation of snow. This is because, despite steady 
winter precipitation, the snowpack in this region is primarily built during a few individual storms 
because warm rain events typically carry more moisture than cooler snow events. This indicates 
the importance of rain vs. snow partitioning in this environment. Dynamical models in a similar 
environment have previously been shown to help resolve issues with rain vs. snow partitioning 
by using the microphysical scheme output to calculate the fraction of rain and snow in an 
individual event rather than relying solely on surface temperature to partition rain vs. snow 
(Wayand et al. 2016a). 

OLYMPEX offered the unique opportunity to further evaluate both WRF and PRISM’s 
ability to predict frozen precipitation using a unique spatiotemporal snow depth dataset.  
However, because snow depth is not a direct measurement of frozen precipitation, we were 
reliant on a hydrologic model to simulate the snow depth. Since precipitation is the greatest 
source of uncertainty in a snow model (Raleigh et al. 2015), we used the hydrologic model 
(evaluated at four nearby SNOTEL sites) to simulate snow depth from estimates of precipitation 
by WRF and PRISM. We then evaluated both WRF and PRISM estimates of precipitation by 
comparing modeled snow depth from each simulation against independent observations of snow 
depth across the mountain range. 
 
3. Location and Data 
 
a. Location and Climate 

 
The Olympic Peninsula is located in the northwestern corner of Washington State, USA.  It is 

surrounded by the Pacific Ocean, the Strait of Juan de Fuca, and the Puget Sound. The mountain 
range, noted for its steep jagged peaks, causes significant gradients in precipitation as moisture-
laden southwest flow is orographically uplifted. Precipitation estimates are greater than 6.5 m 
km-1 in the western peaks and < 2 m km-1 on the leeward side of the mountain range (Figure 1, 
Daly et al. 2008). These precipitation estimates make the windward side of the Olympic 
Peninsula one of the wettest places in the contiguous United States. Surface based radiosonde 
data from 1973-2007 at the nearby Quillayute Sounding showed that at around an elevation of 
1200 m, winter precipitation often transitions from rain to snow (Minder et al. 2010). This is 
further demonstrated at the SNOTEL sites (elevation range of 1270 – 1527 m) where we found 
that forty percent of the hours with observed precipitation between 1 November 2015 and 1 April 
2016 fell within -1°C and 2°C. This makes rain vs. snow partitioning of total precipitation 
critical in this environment for accurately simulating snowfall.  

We found that during WY 2015 temperatures were 2.2ºC greater than normal (0.2ºC 1 
November – 31 March), while precipitation from three NRCS SNOTEL sites was 91% of normal 
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(1143 mm 1 November – 31 March). These conditions were exacerbated in the months of 
January through March with temperatures 3.1ºC above normal. This led to a severe snow 
drought, with an average April 1 snow water equivalent (SWE) that was 3% of normal (622 
mm). WY 2015 was therefore as warm as future climate projections, where future warming 
scenarios are expected to warm 2-5°C over the next century (IPCC 2013, Snover et al. 2013). In 
contrast to this, in WY 2016, temperatures were 0.4°C above normal (1 November - 31 March) 
and therefore April 1 SWE was 104% of the average. Winter precipitation across the three 
SNOTEL sites was 150% of the average. 

 

 
Figure 1: Independent snow depth-monitoring locations used within this study relative to PRISM 30-year 
precipitation averages on the Olympic Peninsula in northwest Washington State, USA. NRCS SNOTEL sites are 
located predominantly on the leeward side of the mountain range and are labeled. Buckinghorse was not available 
during the creation of PRISM but provides a key measurement in the interior region of the Olympic Mountains. 
PRISM was therefore largely dependent on observations outside of the interior mountain range. 

 
b. Snow Depth Monitoring Sites 

 
Within the Olympic National Park boundaries we set up a network of twelve snow 

monitoring sites. These sites provided time-series of snow depth, temperature, and relative 
humidity. At each location, two to three Wingcape® time-lapse cameras were deployed at 
roughly 2.8 to 6.8 meters high in a nearby tree depending on the site’s elevation and the expected 
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amount of snowfall. Historic snow course measurements in this area showed snow depth values 
of up to 7.5 meters. Time-lapse cameras took pictures of the snow depth poles every hour during 
daylight hours (9:00 - 16:00 PDT). Poles ranged in height from 4-6 m, and had black tape every 
5 cm and either red or neon orange/pink tape every 50 cm.  

In WY 2015 all poles had red tape every 50 cm and we therefore depended on a semi-
automated method to measure the snow depth poles rather than our eye because within the 
camera image, the red tape became indistinguishable from the black tape making it nearly 
impossible to process the thousands of images by eye. This method is described in Chapter II of 
this thesis and has been carefully evaluated to provide an uncertainty of ± 4 cm. 

In WY 2016 some snow depth poles became buried in snow and were not visible for months 
at a time. Some snow depth poles also became significantly bent due to snow creep. We 
developed a method that allowed us to correct for the angle of the snow depth pole and provide 
an uncertainty measurement for this correction. The correction for the bent pole and the 
associated uncertainty estimate were based on the azimuth difference between the camera and 
snow depth pole, as well as the estimated angle of the pole, and is further described in detail in 
chapter II of this thesis. When and where the uncertainty in our measurements was greater than ± 
5 cm, the measurements were not used for evaluation in this study, but were instead shown with 
uncertainty bounds to provide guidance in the evolution of the snowpack.  

Adjacent to the cameras, in the trees we placed HOBO U23 Pro-v2 temperature/relative 
humidity data loggers within plastic radiation shields following the methods of Lundquist and 
Hugget (2008). The temperature/relative humidity data loggers were reported by the 
manufacturer to have an uncertainty of ±0.21ºC at 0ºC, with uncertainty increasing to about ± 
0.75 ºC at -40 ºC. Relative humidity accuracy was within ±2.5% between 10% and 90% relative 
humidity. The uncertainty below 10% and above 90% increases to a maximum of ±3.5% 
including hysteresis. For quality control and redundancy, an additional HOBO Pendant 
Temperature Data Logger (UA-001-xx) was deployed adjacent to the temperature/relative 
humidity logger and had a confidence interval between ±0.53ºC from 0ºC to 50ºC. The 
uncertainty increases to ±0.75ºC at -20ºC.  

 
c. NRCS SNOTEL data 
 

Observations of hourly temperature, daily incremental precipitation, daily snow depth, and 
daily SWE data were received from the four National Resource Conservation Service (NRCS) 
SNOTEL locations on the Olympic Peninsula (Figure 1). Two of the SNOTEL sites, 
Buckinghorse and Waterhole, also provided hourly observations of relative humidity (RH), and 
Waterhole provided hourly averaged wind speed. For this study daily incremental precipitation 
was uniformly distributed to hourly values.  

NRCS sites use precipitation accumulation reservoir gauges with antifreeze. Figure 1 shows 
that the majority of the SNOTEL locations are on the leeward side of the mountains. The 
Buckinghorse site is located in the center of the Peninsula’s mountain range but was installed in 
2007. This location was therefore not used in the development of the PRISM climatology.  

Current SNOTEL temperature data are biased warm at cold temperatures due to an erroneous 
conversion from voltages to °C (Julander et al. 2007, Oyler et al. 2015, Harms et al. 2016). The 
NRCS is actively working on this issue, but to date there is no official correction. During WY 
2014 we had co-located HOBO temperature sensors at three of the four SNOTEL sites in the 
Olympics. Observations from the HOBO measurements also suggested the same warm bias at 
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cold temperatures. We corrected for the warm bias in the observations by using a linear equation 
(1) based on a least square regression between the observations and co-located HOBO 
temperature sensors during WY 2014.  Equation 1 is as follows: 

 
𝑇!"## = 1.03 ∗ 𝑇!"#$ − 0.90                                               (1) 

 
where 𝑇!"#$ is the observed raw SNOTEL temperature in °C, and 𝑇!"## is the corrected 
SNOTEL temperature in °C.  
 
d. RAWS Data 

 
Additional daily precipitation observations on the windward side were received from two 

Remote Automated Weather Stations (RAWS) from the Western Regional Climate Center. 
Again, the daily precipitation data was uniformly distributed to hourly precipitation. RAWS use 
unheated-tipping bucket gauges, which may be subject to freezing and thus were not used in the 
creation of the PRISM climatology outside of May-September (Daly et al. 2008). However, air 
temperature at these two locations is above freezing throughout most of the winter as these two 
sites are at elevations of 470 and 1021 meters, which is below the median 0°C-isotherm height. 
Furthermore, we have compared the precipitation at these two sites to the WRF model’s 
precipitation to see if there are missed precipitation events due to gauge freezing and we note 
that on days of precipitation from the WRF model there is precipitation at the RAWS site.  
 
e. PRISM 
 

The PRISM climatology group provides a map of total annual precipitation estimates over a 
30-year period. PRISM is largely dependent on a regression between elevation and observations 
of precipitation. Individual grid cells were further modified based on the coastal proximity and 
the topographic facet (Daly et al. 2008). These two modifications allow PRISM to estimate rain 
shadows and the orographic enhancement of precipitation. In this study we used the 800-meter, 
30-year (1981-2010) climate normal. We combined this with observations of precipitation from 
the RAWS and SNOTEL sites to estimate precipitation using the nearest PRISM climatology 
grid cell. See section 4 for more details. The maximum difference between the PRISM elevation 
map and the elevation of our snow-monitoring sites was 317 m, with a mean difference and 
absolute mean difference of 65 m and 96 m, respectively. 

 
f. WRF 

 
The WRF data were provided by the Northwest Modeling Consortium (Mass et al. 2003), 

which runs and archives the WRF version 3.6.1 output in three nested domains (36, 12, 4 and 4/3 
km). The 4/3 km nested domain encompasses Washington State and uses the Thompson et al. 
(2004, 2008) microphysical scheme without convective parameterizations for numerical weather 
prediction. WRF was run with 84 h forecasts that were initialized every 12 h. As in Minder et al. 
(2010) and Wayand et al. (2016a), the 12-24 h forecasts were extracted from the 84 h forecasts 
and then pieced together to provide a temporally continuous dataset. Wayand et al. (2016a) 
demonstrated the ability of this WRF configuration to resolve mountain passes and valleys, as 
well as improve phase prediction in rain snow partitioning at mountain passes. The maximum 
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difference between the WRF terrain height and the elevation of each snow-monitoring site was 
361 m, with a mean difference and absolute mean difference of 70 m and 105 m, respectively. 
 
g. Airborne Snow Observatory Snow Depth 
  
 Two spatially complete snow depth data sets from airborne scanning LiDAR were provided 
by the Airborne Snow Observatory (ASO) team at the Jet Propulsion Laboratory (Painter et al. 
2016). A snow-off flight for the Olympic Mountains was flown on 4 September 2014. Snow-on 
flights were flown on 8-9 February 2016 and 29-30 March 2016, and the data were processed to 
a three-meter gridded resolution of snow depth. The data was provided in an ellipsoidal WGS-
1984 datum and was then projected into a NAD 1983 UTM Zone 10N grid using a nearest 
neighbor interpolation.  
 The accuracy of ASO in a non-forested, flat, 15 x 15 m area has been shown to have a mean 
absolute error of less than 8 cm, with an overall bias of less than 1 cm (Painter et al. 2016). In 
this evaluation, we focus on snowfall accumulation, and our hydrologic model was not set up to 
simulate forest-snow processes. Therefore, in this analysis we use the classification from the 
CASI 1500 imaging spectrometer, which was aboard the ASO, to remove forested pixels from 
the analysis. Using the March snow depth map, this removed anywhere from 17-78% of the 
snow depth pixels within a 60 meter bounding box (mean: 54%). 
 
4. Methodology 
 
 As outlined in Figure 2 we first calibrated the snow model at the available SNOTEL sites 
using observed uniformly distributed precipitation, we refer to this as the model calibration and 
evaluation phase. We adjusted the precipitation partitioning parameters so that the model was 
unbiased for SWE until peak SWE (Figure 2: 1. a.). We chose two sets of parameter values taken 
from the literature for our new snow density and compaction routine to provide a range of 
uncertainty in modeled snow depth, as neither of these provided an optimal simulation of snow 
depth at all four sites (Figure 2: 1. b.). We then used the same model structure and parameters at 
all of our independent snow monitoring stations using precipitation estimated with PRISM and 
predicted from the WRF model. Since the WRF model has a microphysical scheme, the WRF 
model has two ways to partition frozen precipitation. We evaluated predicting frozen 
precipitation from the WRF total precipitation using a calibrated linear temperature threshold and 
using the WRF’s microphysical scheme. Both simulations from WRF and the simulation using 
PRISM were then evaluated against our observations of snow depth and against the median ASO 
snow depth values within a 60-meter square-bounding box (Figure 2: 2). The following sections 
provide more detail on the model choice, forcing data, calibration, evaluation. Furthermore, we 
explicitly describe how we distribute and partition precipitation using PRISM and WRF. 
 
a. Model set up and description 
 

In this study we used the Structure for Unifying Multiple Modeling Alternatives (SUMMA) 
(Clark et al. 2015a,b,c). SUMMA is a modular, physically based energy balance model with a 
numerical solver at its core. This allowed additional parameterizations to be added to the model 
and allowed multiple existing modeling approaches to be vetted against one another.  
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Figure 2: Conceptual figure of the overarching methodology for evaluating PRISM and WRF’s ability to predict 
frozen precipitation in the Olympic Mountains. Methodology is broken into two phases: 1.) The calibration and 
model evaluation phase against the four available SNOTEL sites, using observed precipitation, two choices in 
specific humidity, and two different sets of new snow density and compaction parameters. Modeled snow depth 
colors correspond to a unique specific humidity and snow density decision, as described in the top left of the figure. 
Black corresponds to observed snow depth. 2.) Evaluating estimated frozen precipitation against our observations 
(median ASO LiDAR 60 m bounding box and snow depth poles). 
 
b. Model calibration 
 

Rain-snow partitioning is the most critical model parameterization in a warm maritime snow 
environment (Wayand et al. 2016a,b).  Therefore, the model was manually calibrated to partition 
rain vs. snow in WY 2016 by searching for an optimal parameter value, 𝑇!"#$ that minimized our 
objective function (2). 𝑇!"#$ is the mid-point value of the wet bulb temperature range, which we 
held constant at SUMMA’s default value, 2°C, wherein precipitation transitions linearly between 
rain and snow as described in USACE (1956). The objective function ensures that there was a 
near zero bias until peak SWE. We do not consider the melt period in our model calibration as 
our study is focused on an evaluation of precipitation and not the ablation season. However, 
because errors in the energy balance can cause biases in modeled SWE before peak SWE, we 
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evaluated the model-forcing variables related to the energy balance closely at the nearby 
Snoqualmie Pass energy balance tower (Wayand et al. 2015). We also note that there was little 
difference in the optimal parameter value, 𝑇!"#$, based on whether we chose to use mean bias 
over the entire period or the root mean square error (RMSE). The objective function, 
𝐵𝚤𝑎𝑠→!"#!", is written as follows: 
 

𝐵𝚤𝑎𝑠→!"#!" =
!"#!!,!!!"#!!,! !!

!!!
!"#$
!!!

!"#$
                                    (2) 

 
where 𝑛 is an individual SNOTEL site, and 𝑘 signifies the number of days between the first 
continuous snow period and the day of peak SWE. 𝑆𝑊𝐸! is modeled SWE averaged from 
hourly time-steps to daily values, and 𝑆𝑊𝐸! is observed daily SWE. 𝑆𝑁𝑇𝐿 is the number of 
SNOTEL sites used in the evaluation. In this study, 𝑆𝑁𝑇𝐿 differs between two and four 
depending on the source of specific humidity used in the model. 

Based on prior modeling experience in this environment, we calibrated the model by evenly 
sampling 25 members of a uniformly distributed 𝑇!"#$ parameter space between -1.55°C and  
-0.25°Ç. The optimal 𝑇!"#$ value from minimizing 𝐵𝚤𝑎𝑠→!"#!" is shown in Table A1 along with 
other model parameters. Each model parameter was either taken from SUMMA’s default values, 
fit to observations at the nearby Snoqualmie Pass energy balance tower, or taken from the 
literature (Table A1). A description of the model forcing data shown in the model calibration and 
evaluation phase is shown in Table A2 along with a brief explanation as to why these forcing 
variable estimates were chosen. Modeled SWE and snow depth from the calibration phase for 
each forcing data set are shown in Figure 3. 

 
c. Model Calibration Results - SWE 
 

Accurate measurements of specific humidity are essential, as the temperature during snowfall 
events is typically near the rain vs. snow threshold, and we determine rain vs. snow through the 
wet bulb temperature. Therefore, we tested the sensitivity of our model calibration to different 
specific humidity inputs, specifically comparing those measured in situ with those calculated by 
WRF (Fig. 2a).  Despite differences in specific humidity and variations at individual SNOTEL 
sites (Table 1), both sets of forcing data converged on the same 𝑇!"#$ value for a minimum 
𝐵𝚤𝑎𝑠→!"#!" (Table A2). 

 
	 Bias	until	Peak	SWE	[cm]	
	 Model	Forcing:	Set	1	 Model	Forcing:	Set	2	
Dungeness	 --	 0.4	
Mount	Crag	 --	 -6.4	
Buckinghorse	 -1.7	 1.7	
Waterhole	 1.2	 4.8	
All	(mean)	 -0.3	 0.1	
Table	1:	Model	evaluation	statistics	from	WY	2016	at	four	NRCS	SNOTEL	sites	using	model	parameters	from	
Table	A1	and	model	forcing	decisions	as	described	in	Table	A2.		Bias	until	Peak	SWE	shows	the	individual	
biases	in	simulating	SWE	compared	to	observations	for	individual	sites.		
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Figure 3: Resulting model SWE (dotted line) and snow depth from the calibration phase for each forcing data set. 
ρW refers to the new snow density and compaction parameters suggested by Wayand et al. (2016). ρW references the 
Hedstrom and Pomeroy (1998) new snow density parameters with the Anderson (1976) compaction parameters. See 
section 4.d. for more details. q references the source of specific humidity in the model (WRF or observations). 
 
d. Model Evaluation of Snow Depth 

 
We use two sets of literature values for the new snow density and compaction parameters 

(Table A1, Figure 2, Figure 3) to generate an ensemble that accounts for the model uncertainty in 
simulating snow depth. Within these two sets of snow density parameters, the choice in specific 
humidity is also varied to generate a four-member ensemble for each SNOTEL site. Snow 
density parameter set 1 used literature values from Wayand et al. (2016b) (ρw), who ran an 
ensemble of SUMMA simulations with varying parameters at the nearby Snoqualmie Pass 
energy balance tower to evaluate new snow density and compaction parameters against 
observations of snow depth. We chose results from Snoqualmie Pass, WA because of its 
maritime climate and relatively similar geographic region and elevation (921 m). We chose the 
parameter set from the bulk calibration method because the new snow density parameterization 
that showed optimal values from a systematic evaluation of new snow density was a function of 
wind speed (Boone 2002), and we only have a single observation of wind speed within our study 
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domain. The other set of snow density parameters comes from two separate studies (ρHPA). We 
chose new snow density parameters from the Hedstrom and Pomeroy (1998) study because this 
represented the opposite side of the new snow density spectrum, and the parameterization from 
Hedstrom and Pomeroy (1998) is embedded in SUMMA. The parameter values were optimized 
from new snow density observations in a cold continental climate, which typically provides 
much lower new snow density values (Judson and Doesken 2000, LaChapelle 1962). Lastly, we 
used default compaction parameters from the commonly used Anderson (1976) parameterization 
in ρHPA. 

 Errors on 29-30 March 2016 from simulations of snow depth for various snow density and 
specific humidity decisions are shown in Table 2. We chose 29-30 March 2016 as an evaluation 
date instead of peak snow depth because 29-30 March is the closest date to peak snow depth 
(~13 days) that we had Airborne Snow Observatory snow depth data. Results from Table 2 
showed that the optimal bulk calibration parameters from ρw consistently provided lower snow 
depth values than the ρHPA parameters (Figure 3). Neither parameter set provided a perfect model 
simulation, nor was one consistently under-predicting or over-predicting snow depth (Table 2). 

In our snow depth evaluation we use the mean of the ensemble for two reasons: First, there 
are systematic differences in how model parameters affect modeled snow depth (Table 2, Figure 
3). The ρw model parameters resulted in lower snow depth values, while ρHPA resulted in higher 
snow depth values for the same model forcing data. Therefore, the ensemble mean provides a 
way to reduce the dimensionality of the model uncertainty. Second, no simulation was shown to 
be optimal at all evaluation sites. 

 
	 Snow	Depth	Differences	Mar.	29-30	[	cm	/	%	]	

Specific	Humidity	Source	 q	from	obs.	RH	 q	from	WRF	 q	from	obs.	RH	 q	from	WRF	 Ensemble	Mean	

New	Snow	Density	and	
Compaction	Parameters	

Wayand	et	al.	
(2016)	

Wayand	et	al.	
(2016)	

Hedstrom	and	
Pomeroy	(1998)	
&	Anderson	

(1976)	

Hedstrom	and	
Pomeroy	(1998)	
&	Anderson	

(1976)	 	
Dungeness	 --	 							3.6		/					7.7	 --	 				11.5		/				24.7	 						7.5		/			16.2	
Mount	Crag	 --	 			-69.4		/		-30.3	 --	 			-45.9		/		-20.1	 		-57.6		/		-25.2	
Buckinghorse	 					-55.8		/		-15.4	 			-49.4		/		-13.6	 				-12.5		/		-3.5	 					-3.9		/					-1.1	 		-30.4		/				-8.4	
Waterhole	 							-1.8		/						0.8	 				17.4		/						7.2	 					30.7	/		12.8	 				51.8		/				21.6	 			24.5		/				10.2	
All	(mean)	 				-28.9		/					-8.1	 			-24.4		/				-7.3	 							9.1		/			4.7	 						3.4		/						6.3	 		-14.0		/				-1.8	
Table	2:	Difference	between	modeled	snow	depth	and	observed	snow	depth	on	March	29-30	2016	at	four	
NRCS	SNOTEL	sites.	Model	differed	in	various	snow	density	and	specific	humidity	decisions	(q).	
	

In the model evaluation phase we found the percentage errors (Table 2) to be normally 
distributed around 0%, with a 95% confidence interval within ±33% and a standard deviation of 
17%. Therefore, in the annual precipitation evaluation phase, we determined an over-
accumulation or under-accumulation of total annual frozen precipitation to occur when the 
difference between observed snow depth and the ensemble mean of modeled snow depth was 
greater than 17 % on 29-30 March 2016.  
 
e. Precipitation Distribution 
 

In the precipitation evaluation phase, model runs that were forced with PRISM used the 
PRISM climatology with six sources of precipitation (𝑃!) to estimate precipitation at a snow 
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monitoring station. Sources of precipitation included the two RAWS stations and four NRCS 
SNOTEL stations. For example, at a single snow monitoring station, the ratio between the 
nearest 30-year normal PRISM annual precipitation value at the snow monitoring station and all 
precipitation sites was determined. These were referred to as the PRISM multiplier (𝑚!). The 
relative inverse distance was also calculated to determine a set of weights for an individual 
snow-monitoring site (𝑤!), as shown in equation 3: 

 

𝑤! =  
!
!!
!
!!

!
!!!

                                                                  (3) 

 
where 𝑑! is the distance between a snow monitoring site and a precipitation source. Here 𝑛 was 
equal to six as there are six precipitation sources. The sum of all the weights for each snow 
monitoring site is equal to 1. The total precipitation at a snow monitoring station (𝑃!"!) was then 
calculated in equation 4: 

 
𝑃!"! =  𝑃!𝑚!𝑤!!

!!!                                                       (4) 
 
This allowed a precipitation site that was closer to the snow monitoring station to influence 

the precipitation at the snow monitoring station more than a source of precipitation farther away. 
After the precipitation was determined, the calibrated model (section 4 a-d) was run with the 
model decisions described in Table A1 and Table A2. 

Model runs that used WRF precipitation partitioned precipitation in two different ways. In 
one set of model runs, total precipitation was taken directly from the nearest WRF model grid 
cell and converted from accumulated to incremental values. These values were aggregated to 
daily values and then uniformly distributed to the hourly values to be consistent with the 
methods we used during the model calibration. The uniformly distributed WRF data was then 
run using the same set of model decisions and model forcing decisions (besides precipitation) as 
with the PRISM model run. Both of these model runs used the linear precipitation-partitioning 
scheme from the SWE calibration, and we therefore refer to this as the WRFLP modeling set up 
from here on. 

In the other set of WRF model runs, SUMMA was modified to allow the fraction of rain or 
snow in any given event to be prescribed using a priori calculations based on output from 
WRF’s microphysical scheme. Precipitation partitioning was calculated as shown in equation 5: 
	

𝑟𝑎𝑖𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =  1− !"#$!!"#$!!"#$%&'
!"#$% !"#$%&%'('%)*

                                   (5) 

where 𝑆𝑛𝑜𝑤, 𝐻𝑎𝑖𝑙, 𝐺𝑟𝑎𝑢𝑝𝑒𝑙, and 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 were derived from the WRF model’s 
microphysical scheme and converted from accumulated values to incremental values. This 
modeling scenario, WRFMPP, therefore is forced with WRF precipitation using the hourly 
incremental data and partitioning as described in the Thompson et al. (2008) microphysical 
scheme and is therefore not dependent on the wetbulb temperature. This differs from WRFLP, 
which used the calibrated linear threshold based on wetbulb temperature to determine the correct 
phase of the precipitation most of the time. The WRFMPP has the same model forcing data 
decisions and model decisions as in both the WRFLP and the PRISM model runs (except for 
those related to precipitation and precipitation partitioning). 
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5. Results 
 

a. Frozen Precipitation Evaluation – WY 2016 
 
1.  Annual Differences 

 
Modeled and observed snow depth time-series for WY 2016 all represented storm timing 

well (Figure 4). In tabulating our results (Table 3), we compared the various model simulations 
with the median 29-30 March 2016 ASO LiDAR snow depth value within a 60 m bounding box 
rather than the snow depth pole, as the point pole measurements may not be spatially 
representative of the general area (see further details in Appendix 4), especially in cases where 
the pole was significantly bent or buried in snow.  
 

	
Figure	4:	Snow	depth	time-series	at	all	twelve	independent	measurement	sites.	Thick	line	represents	the	
ensemble	mean	for	PRISM,	WRFLP,	and	WRFMPP	while	the	thin	dotted	lines	represent	individual	ensemble	
members.	Black	dotted	lines	with	gray	shading	show	the	angle	corrected	snow	depth	measurements	from	the	
time-lapse	camera	network	along	with	their	relative	uncertainty.	Green	box	and	whisker	plots	show	the	
distribution	of	values	from	within	a	square	60-meter	area	around	the	snow	depth	pole.	The	minimum	and	
maximum	values	of	the	box	and	whisker	plot	show	the	bottom	10%	and	top	90%	of	the	snow	depth	values	
within	the	60-meter	bounding	box,	respectively.	
	

We found that all simulations had similar mean absolute differences. However, WRF 
precipitation, partitioned by the microphysical scheme output (WRFMPP), performed better on 
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average than WRF precipitation partitioned using the calibrated linear threshold (WRFLP) as 
WRFMPP had a mean difference closer to zero. WRFLP was generally biased low, with a mean 
difference across all sites of -50.3 cm (Table 3, Figure 4). This is equivalent to ~4-8% of the 
estimated annual precipitation not being stored in the snowpack, assuming a bulk density of 400 
kg m-3. 	

	

	

PRISM	with	linear	
precipitation	partitioning	

(PRISM)	

WRF	with	linear	precipitation	
partitioning	(WRFLP)	

WRF	with	prescribed	
precipitation	partitioning	

(WRFMPP)	

Modeled	–	
Observed	

	

March	
Ensemble	
Mean	

Difference	
[cm	/	%]	

March	
Difference	

Greater	Than	
±17%?	

March	
Ensemble	
Mean	

Difference	
[cm	/	%	]	

March	
Difference	

Greater	Than	
±17%?	

March	
Ensemble	
Mean	

Difference	
[cm	/	%]	

March	
Difference	

Greater	Than	
±17%?	

Anderson	Pass	
East	 					-50		/		-15	 No	 										-1		/						0	 No	 						44		/			13	 No	

Anderson	Pass	
West	 					-51		/		-14	 No	 										-1		/						0	 No	 						34		/			10	 No	

Black	and	White	
East	 							45		/		15	 No	 								-47		/		-16	 No	 					-11		/				-4	 No	

Mount	Christie	 					-26			/			-8	 No	 							-60			/		-19	 Yes	 						92		/			29	 Yes	
Mount	Hopper	 						43			/		10	 No	 					-104		/			-23	 Yes	 		-106		/		-23	 Yes	
Mount	Seattle	

East	 				117		/		59	 Yes	 								44		/			-22	 Yes	 						96		/			48	 Yes	
Mount	Seattle	

West	 					44		/			12	 No	 						-62		/				-17	 No	 					-41		/		-11	 No	
Mount	Steel	 				-49		/		-11	 No	 			-144		/				-32	 Yes	 			-140		/		-31	 Yes	

Black	and	White	
West	 					60			/			32	 Yes	 									6		/						3	 No	 									4		/						2	 No	

Wynoochee	Pass	 		-111		/		-53	 Yes	 			-161		/			-77	 Yes	 					-17		/					-8	 No	
Lake	Connie	 				-40		/		-11	 No	 					-88		/			-25	 Yes	 			-113		/			-32	 Yes	
West	of	Lake	
Lacrosse	 				-27		/				-9	 No	 					-12		/						4	 No	 						35		/					11	 No	

Total	Sites	 12.0	 	 		 	 		 		
Mean	

Difference	 -4			/	0	 	--	 -50		/		-15	 	--	 -10	/	0	 	--	
Mean	Absolute	

Difference	 55		/		21	 	--	 61		/		20	 	--	 61		/		18	 	--	
Number	of	
Occurrences	
Outside	the	

Range	 	--	 3.0	 	--	 5.0	 	--	 5.0	
Table	3:	Ensemble	mean	of	modeled	snow	depth	from	various	sources	of	precipitation	compared	to	
observations	on	29-30	March	2016.	The	average	modeled	snow	depth	value	between	29	and	30	March	2016	
from	the	ensemble	mean	was	compared	to	the	median	value	within	a	3600	m2	area	from	the	Airborne	Snow	
Observatory	data	that	had	the	forest	values	removed.	
	

The WRFMPP model simulated snowfall with similar skill to PRISM in WY 2016, and the 
best performance was related to how the errors were reported or the metric used. For instance, 
PRISM and WRFMPP were both generally unbiased. However, PRISM resulted in a mean 
difference closer to zero than WRFMPP, but WRFMPP resulted in an almost identical mean 
difference when the number was reported as a percentage. Furthermore, when looking at the 
mean absolute difference, WRFMPP had a lower mean absolute difference compared to PRISM 
when the number was reported as a percentage, indicating that WRFMPP generally had larger 
errors than PRISM, but these were generally located at sites with more observed snow.	
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This was further shown using a different metric. We found that PRISM’s ensemble mean fell 
outside the range of the snow model’s uncertainty (±16.8%) only three times compared to 
WRFMPP and WRFLP, which both fell outside of this range five times. This suggests that we are 
more confident that PRISM was able to estimate frozen precipitation at more locations on an 
annual basis than both simulations of WRF. However, because both WRFMPP and PRISM were 
both generally unbiased and had a similar mean absolute difference, it is difficult to definitively 
say which model performed best.  

 
2. Individual Storms 

 
Despite problems with snow depth poles becoming buried later on in WY 2016, we had high 

quality observations of snow depth from the time-lapse camera network during the intensive 
observational period of the OLYMPEX campaign (Figure 4). During this time-period we look 
only at positive differences in snow depth from both the observations (available daily) and the 
model. During this period there are two significant events: one in late November and a series of 
snowstorms in December.  

We computed cumulative sums of snow accumulation between 1 November and 23 
December 2015 and for the December snowstorms (4 December – 23 December 2015). We note 
that snowfall in December continued until around 25 December 2015, but our observations were 
no longer valid after 23 December because of dome like structures that formed on the outside of 
the pole, which resulted in observations that would be biased high. Therefore we limit our 
analysis to the period until 23 December 2015. A few exceptions to this were made at Black and 
White East and Lake Connie, where the evaluation ends on 18 December and 22 December, 
respectively. After these dates the poles become significantly bent towards the camera or buried. 
Total differences in accumulated snowfall between modeled and observed are shown in Table 4. 

 
2.1: 1 November – 23 December 2015 

 
Again, PRISM and WRFMPP had a similar mean difference and mean absolute difference. 

PRISM had a slightly lower mean difference (19.1 cm) compared to WRFMPP (24.6 cm) when 
looking at the total accumulation between 1 November 2015 and mid December 2015. Errors in 
both PRISM and WRFMPP were not consistent; PRISM may have under-accumulated at one site 
while WRFMPP over-accumulated at that same site or vice versa (Table 4; Figure 5).  Similarly, 
errors in WRFMPP and WRFLP were not consistent either. WRFLP had the lowest mean absolute 
difference but again exhibited an overall low bias (-44.9 cm). 
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Figure 5: Accumulated snow depth between 1 November and 23 December 2015 during the OLYMPEX intensive 
observational period. Observed accumulated snow depth is shown with black dots and the ensemble mean of the 
simulated cumulative snowfall is shown in the thick colored line. Individual ensemble members are again shown 
with thin dotted lines. 
 

2.2: 1 December – 23 December 2015 
 

Looking at just December, when the Olympic Mountains received most of its snow in WY 
2016, the best model performance shifted from PRISM to WRFMPP (Table 4; Figure 6). WRFMPP 
resulted in the mean difference closest to zero and lowest mean absolute difference. WRFMPP had 
a mean difference of 12.8 cm and a mean absolute difference of 43.5 cm, while PRISM on 
average under-accumulated snowfall with a mean difference of -36.4 cm and a mean absolute 
difference of 49.2 cm. WRFLP also under-accumulated snowfall on average with larger errors 
than PRISM.  In general PRISM over-accumulated the November storm but then under- 
accumulated the December storm period (Figure 5 and Figure 6). We found similar behavior 
with WRFLP but not to the same extent as PRISM. WRFMPP generally simulated both periods 
well but exhibited biases at particular locations.  
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1 November 2015 –  
23 December 2015 

4 December 2015 –  
23 December 2015 

  
PRISM 

Minus Obs. 
[cm/%] 

WRFLP 
Minus Obs. 

[cm/%] 

Diff. WRFMPP 
Minus Obs. 

[cm/%] 

PRISM  
Minus Obs. 

[cm/%] 

WRFLP  
Minus Obs. 

[cm/%] 

Diff. WRFMPP 
Minus Obs. 

[cm/%] 
       
Anderson Pass East    -13   /   -4      21  /     7    115  /   36     -51  /   -21    -26  /  -11    50  /      23 
Anderson Pass West    -34   /  -10        2  /     1      95  /   27     -78  /   -29    -52  /  -19    23  /        9 
Black and White East     66   /    26     -42  /  -17      21  /     9      18  /    12    -33  /  -22    27  /      19 
Mount Christie     45   /    15     -27  /    -9    128  /   43        1  /      0    -47  /  -23    71  /      35 
Mount Hopper   205   /    61      35  /    11      78  /   24      73  /    29    -26  /  -11    23  /        9 
Mount Seattle East     47   /    14     -56  /  -16      11  /     3     -23  /     -9    -92  /  -36   -15  /      -6 
Mount Seattle West     47   /    12     -69  /  -17     -23  /   -6        0  /      0    -81  /  -30   -19  /      -7 
Mount Steel       5   /      1    -102  /  -24     -36  /   -8     -66  /   -20  -129  /  -39   -73  /    -22 
Black and White West    -22   /    -7   -103  /  -31     -73  / -22     -50  /   -20  -103  /  -42   -39  /  -116 
Wynoochee Pass  -119   /  -39   -180  /  -59     -52  / -17   -130  /   -51  -167  /  -66   -65  /    -25 
Lake Connie     41   /    14     -14  /    -5     -20  /   -7     -12  /     -6    -55  /  -25   -13  /      -6 
West of Lake Lacrosse   -40    /  -12       -5  /    -1       51  /  15     -53  /   -22    -29  /  -12    35  /     15 
              

Mean Difference 19  /  6 -45  /  -14 25  /  8 -31  /  -11 -70  /  -28 1  /  2 

Mean Abs. Difference 57  / 18 55  /  17 59  / 18 46  /  18 70  /   28 38  /  16 

Average absolute 
difference from 
SNOTEL sites using 
observed 
precipitation 

 -- 35  /  14  --  -- 28 /  15   -- 

Maximum absolute 
difference from 
SNOTEL sites using 
observed 
precipitation 

 -- 50  /  20  --  -- 44 /  25   -- 

Table 4: Total difference in accumulated snowfall between the model ensemble mean and observed snowfall during 
two windows within the intensive OLYMPEX observational period.  Average/Maximum absolute difference from 
SNOTEL sites using observed precipitation is the average/maximum absolute difference from the model ensemble 
mean and the observations of SNOTEL snow depth accumulation between the two windows. Simulations that are 
outside of the maximum absolute difference [cm and %] are in bold. 
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Figure	6:	Accumulated	snow	depth	between	4	and	23	December	2015	during	the	OLYMPEX	intensive	
observational	period.	Observed	accumulated	snow	depth	is	shown	in	black	and	the	ensemble	mean	of	the	
simulated	cumulative	snowfall	is	shown	in	the	thick	colored	line.	Individual	ensemble	members	are	again	
shown	in	thin	dotted	lines.	
 

b. Frozen Precipitation Evaluation – WY 2015 
 

The same model ensembles were run in WY 2015 as in WY 2016. In WY 2015 we compared 
the simulations to observations from seven reliable snow monitoring sites.  These observations 
clearly reflect the abnormally warm conditions, with a maximum snow depth of around 85 cm 
across all our snow monitoring sites. Using the same linear temperature threshold for 
precipitation partitioning in WY 2015 as in WY 2016, we see promising results in model 
transferability to a warmer winter when modeling the four SNOTEL sites with observed 
precipitation (Figure 7). 

In WY 2015 we took advantage of having continuous observations and used the same type of 
analysis as we did for the intensive observational period in WY 2016 (Figure 8). This allows us 
to isolate our evaluation to the simulation of snowfall from different precipitation sources. Our 
analysis showed that PRISM had the lowest mean difference (2.4 cm), but WRFLP had the lowest 
mean absolute difference (68.2 cm). WRFMPP had similar errors to PRISM, with a mean absolute 
difference of 89.4 cm. WRFLP continued to be biased low, while WRFMPP was biased high on 
average. PRISM remained unbiased in WY 2015 as in WY 2016 but we note that our sample size 
was reduced in WY 2015.  
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 The total WY maximum absolute difference at the SNOTEL sites from the ensemble mean 
that used the observed precipitation was 28 cm (Figure 7). We found in WY 2015 that 66% of 
the absolute percent errors at the SNOTEL sites were less than 17%, as they were in WY 2016.	
PRISM, WRFLP, and WRFMPP sometimes differed in accumulation by the end of the water year 
by far more than 28 cm or by more than the 17% (Figure 8). Therefore we presume that most of 
the errors are attributable to precipitation sources. In WY 2015 PRISM continued to overestimate 
precipitation at Mount Hopper while WRFMPP continued to overestimate precipitation at Mount 
Christie. Mount Steel was simulated well by PRISM in both years, and Black and White East 
was simulated well by WRFMPP and PRISM in both years.  

 

	
Figure	7:	Top	panel:	Model	and	observed	snow	depth	in	WY	2015	at	the	four	SNOTEL	sites.	Black	dots	
represent	the	observations.	Bottom	panel:	Model	and	observed	accumulated	snow	depth	during	the	entire	
water	year	2015.	Black	dots	represent	the	positive	daily	differences	from	the	observations.	
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Figure	8:	Accumulated	snow	depth	during	the	entire	water	year	2015.	Observed	accumulated	snow	depth	is	
shown	in	black	and	the	ensemble	mean	of	the	simulated	cumulative	snowfall	is	shown	in	the	thick	colored	
line.	Individual	ensemble	members	are	again	shown	in	thin	dotted	lines.	Percent	errors	in	total	accumulated	
snowfall	are	shown	in	the	bar	chart.	Colors	are	consistent	between	line	charts	and	bar	chart.	Horizontal	lines	
in	bar	chart	show	the	mean	absolute	percent	difference	across	the	seven	independent	evaluation	sites	in	WY	
2015.	Gold	line	(WRFMPP)	overlaps	the	blue	line	(PRISM).	
 

c. Spatial Distribution of Errors 
 

When considering the directionality of the model differences from the observations in WY 
2016, spatially coherent patterns appear (Fig. 9). PRISM shifts from over-accumulating in the 
Northern Quinault (MSW & MSE) to under-accumulating in the Elwha Watershed (MC, BK). 
The PRISM climatology (Figure 1) shows that there is a significant drop in PRISM estimated 
precipitation between the Northern Quinault and the Elwha Watershed. This intuitively makes 
sense as the mountain range transitions from the windward side to the leeward side. However, 
the dramatic difference (-101.4 cm) in modeled snow depth using PRISM at Buckinghorse (BK) 
from observed snow depth suggests that PRISM weights associated with topographic position 
may be estimating too sharp of a gradient between the windward and leeward side of the 
mountain range.  
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Figure	9:	Spatial	differences	in	errors	at	independent	snow	depth	sites.	Black	triangles	show	that	the	mean	of	
the	model	ensemble	for	PRISM,	WRFLP	or	WRFMPP	differed	by	less	than	17%	of	the	observations	but	are	scaled	
for	how	much	they	differ	from	the	observations.	Black	lines	show	watershed	delineations	based	on	USGS	
streamflow	gauges	for	seven	different	watersheds.	
 

Furthermore, PRISM under-accumulated frozen precipitation in the Eastern Quinault (APE, 
APW, WLL). Here, we postulate that the spatial weights due to coastal proximity may cause 
PRISM’s estimate of precipitation to be too low. For instance, Anderson Pass East (APE), 
Anderson Pass West (APW), and West of Lake Lacrosse (WLL) are inside the Eastern Quinault 
Watershed, and all indicate that PRISM under-accumulated snowfall. These sites do not sit on 
the leeward side of the mountain range, as did MC and BK but instead, they are located on the 
windward side, on the banks of a deep U-shaped valley, referred to as the Enchanted Valley.  

Additional support for both of these theories is that WRFMPP over-accumulated frozen 
precipitation at Buckinghorse, Anderson Pass, and West of Lake Lacrosse. Therefore, the 
physically-based model and the observations of snow depth indicate that this region is wetter, at 
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least during cold precipitation events, than PRISMs annual climatology would suggest. Also, the 
Eel Glacier and Anderson Glacier are located near the Anderson Pass sites and provide physical 
evidence that on average this is one of the wetter areas in the Olympic Mountains. However, we 
cannot definitively conclude that PRISM is wrong in the Eastern Quinault because PRISM 
simulated snow depth differed by less than 17%, which means the difference could be due to the 
snow model uncertainty.  

Model simulations that estimated precipitation with PRISM simulated snow depth errors at 
Mount Steel (MS, Fig. 9) and Mount Hopper (MH, Fig. 9) with different directionalities, but MS 
and MH were located about 700 meters apart from each other. However, both sites were located 
in two separate PRISM grid cells that differ in precipitation estimates by about 10%. MH is 
located at the edge of the PRISM grid cell, and therefore it may better reflect the MS 
precipitation estimate.  

WRFMPP and WRFLP also showed differences in directionality at Mount Seattle West (MSW) 
and Mount Seattle East (MSE). Both of these sites were forced with the same WRF precipitation 
as they were located around 950 meters apart from each other and therefore had the same nearest 
grid cell. However, both experienced different observed snow accumulation in both water years 
(Figure 4, 5 and 8). MSW accumulated more snow than MSE and therefore suggests that within 
a WRF grid cell there is spatial variability in observed snowfall. Therefore the over-
accumulation compared to observations at MSE may be balanced out by the under-accumulation 
seen at MSW, and WRF may have accurately simulated snowfall within the area of this WRF 
grid cell. This highlights the complexity of evaluating gridded precipitation sources at larger 
spatial resolutions to smaller domains (point or 60 m area). See discussion for more information. 
 
6. Discussion 
 

a. Spatial Representativeness of LiDAR Observations to PRISM and WRF Grid Cells 
 

There is a significant range in observed snow depth within a spatial scale of 60, 800 (PRISM 
resolution), and 1333 (WRF resolution) meters (Figure 10). Assuming a snow density of 400 kg 
m-3, SWE ranges from around 0.5 to 2.5 meters, depending on the site. In general the snow depth 
distributions were similar, regardless of spatial scale. However, the median values were not 
always consistent amongst different spatial areas. An analysis showed that the median snow 
depth value from a 60 m bounding box was generally higher by about 20-60 cm when compared 
to the median value from an 800 m bounding box. Similarly, we found that the median elevation 
within a 60 m bounding box was around 40-80 meters higher than the elevation within an 800 m 
bounding box. Therefore the change in the median elevation value and the median snow depth 
values at different spatial scales were generally correlated. However, when we used an observed 
lapse rate and the calculated sensitivity of rain vs. snow to temperature (see section 6. b.) we 
could not fully explain the differences in median snow depth values across spatial scales based 
on changes in median elevation alone. We therefore hypothesize that interactions between wind, 
terrain, vegetation, and the sensitivity of temperature to rain vs. snow partitioning may be 
responsible for these differences in median values at different spatial scales. We suggest future 
work use high-resolution distributed modeling (3 m grid cell) that accounts for the local and 
complex elevation changes within an 800 and 1333 m grid to compare distributions of snow 
depth from LiDAR observations to those simulated by the distributed snow model. 
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Figure	10:	Normalized	empirical	distribution	functions	(EDF)	showing	the	distribution	of	snow	depth	values	
within	different	spatial	areas	surrounding	the	location	of	the	snow	depth	pole.	Vertical	dotted	lines	show	the	
corrected	pole	measurements	when	available.		Solid	vertical	lines	show	the	mean	model	ensemble	for	various	
precipitation	sources	on	29-30	March	2016.		Note	that	at	Mount	Hopper,	Mount	Seattle	West,	Mount	Steel	and	
West	of	Lake	LaCrosse	WRFMPP	(gold)	and	WRFLP	(red)	overlap.	

 
Lake Connie (LC), which sits near the top of a ridgeline, had the most dramatic difference 

(~1 meter) between the median observed snow depth values and median elevation when looking 
at different spatial scales. The distributions show that both WRFMPP and WRFLP were more 
reflective of the median snow depth value from the 800 m or 1333 m bounding box rather than 
the 60 m bounding box (Figure 10), and therefore both WRFLP and WRFMPP may not be under-
accumulating at LC (Figure 4, Figure 9). Similarly, when PRISM was compared to the median 
value from the larger spatial domain at LC, the PRISM estimate simulated more snow depth than 
the median ASO snow depth value from an 800 or 1333 m bounding box, but it agreed with the 
snow depth value from the median 60 m bounding box. Therefore, it is possible PRISM over 
accumulated snow in this region. 

Furthermore, WRFMPP and WRFLP at MSE over-accumulated snow when compared to the 
median value from the 60 m bounding box. However, WRFMPP and WRFLP at MSE agreed with 
the median value from a larger spatial domain (Figure 10). This is consistent with results from 
section 5.c, where we showed that MSE and MSW had the same WRF precipitation, but both 
MSE and MSW experienced different amounts of observed snowfall. This highlighted the spatial 
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variability of snowfall and snow depth within a WRF grid cell and suggested that the over- 
accumulation at MSE may be balanced out by looking at a larger spatial distribution of snow 
depth within the domain of a WRF grid cell. We found by incorporating observations from the 
nearby MSW site (more snowfall; Figure 5) and by looking at the median value from a larger 
spatial domain (Figure 10) that this was true. Together, this showed that at MSE, WRFMPP, and 
WRFLP accurately simulated snowfall within the size of a WRF grid cell. 

Despite the difficulty and complexity of evaluating gridded precipitation products to both 
point or larger spatial areas, we highlight that at most locations, like MSW, there was little 
change in the evaluation of PRISM, WRFMPP, and WRFLP when moving from the 60 m bounding 
box to a larger spatial area (Figure 10). For instance, PRISM simulations at sites in the Eastern 
Quinault (APE, APW, MLL; Figure 9) appear to still be biased low compared to the observations 
at larger spatial areas (Figure 10). Furthermore, WRFMPP, WRFLP, and PRISM at most sites still 
tend to be simulating snow depth well when compared to the spatial distributions of snow depth 
from larger and smaller spatial areas.  

 
b.  Rain vs. Snow Sensitivity 
 
 There were significant differences in model performance based on the method used for rain 
vs. snow partitioning. Each method had its own advantages and disadvantages. For instance, the 
calibrated linear temperature threshold method was dependent on uniformly distributing daily 
total precipitation observations because the calibration locations in the Olympic Mountains were 
at locations with only daily observations of precipitation. We explored what would happen if the 
calibrated linear temperature threshold were run with hourly WRF precipitation. We found a 
systematic and more significant low bias (-109 cm) in the simulations of snow depth compared 
to when we used the uniform distribution of WRF daily precipitation (WRFLP: -50 cm). 
However, when this calibrated linear temperature threshold was used with the observed daily 
precipitation observations and the PRISM climatology, we found that the model was generally 
unbiased in simulating snow depth on an annual basis, but there were generally errors during 
individual storms, making this method promising for summer water supply forecasting but 
maybe not for estimating snowfall during individual storms. This is because this method is 
designed to correctly partition precipitation on average. 
 We found that using the output from a microphysical scheme for precipitation and 
partitioning (WRFMPP) yielded results that were as good or better than the PRISM method. This 
indicated a promising path forward in hydrology, as WRFMPP was able to simulate changes in 
rain vs. snow at an hourly time step and was not dependent on using the linear temperature 
threshold for a non-linear process. For example, using the output from the microphysical scheme, 
we back calculated the Tcrit model parameter by finding the wet bulb temperature during events 
that had a rain fraction (5) that was between 20% and 80%. The back calculated Tcrit from WRF 
wet bulb temperature was normally distributed around 0.7°C with a 95% confidence interval that 
ranged from -2.2°C to 3.6°C and a standard deviation of 1.5°C. The back calculated Tcrit model 
parameter was also found to be dynamic in that it changes from hour to hour within a storm. 
Similar results were found when we constrained the rain fraction to 30-70%. 
 Additionally, we found Tcrit to be a highly sensitive model parameter.  During the model 
calibration, we found that a 1°C (-1.4-0.4°C) change in the Tcrit model parameter resulted in a 
difference at the Buckinghorse SNOTEL site in over a half a meter (52 cm) of SWE. Errors in 
modeled SWE at Buckinghorse thus ranged from -14% to 18% for a 1°C change in the Tcrit 
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parameter value. Similar results were found across the rest of the SNOTEL sites as well. We 
determined that for a 0.2°C change in the critical temperature value, the error in peak SWE 
changed on the order of anywhere between 2 and 8%. 
 Using temperature sensors that were deployed during the OLYMPEX campaign that ranged 
from 180 meters to 1,458 meters, we determined the mean lapse rate to be -4.5 °C km-1 during 
precipitation events. This is consistent with previous work (Minder et al. 2010) that showed 
lapse rates within the Pacific Northwest are considerably less than the assumed -6.5°C km-1. This 
-4.5 °C km-1 lapse rate in conjunction with the rain vs. snow sensitivity shows that an elevation 
change of 100 meters could result in a 4 to 16% change in peak SWE for that elevation band. 
This sensitivity underscores the importance of using a correct lapse rate in this environment 
when using a distributed model, as using a commonly applied -6.5 °C km-1 lapse rate will result 
in a significant difference in total SWE per elevation band than what would likely be observed.  

When using WRF with the Thompson et al. (2008) microphysical scheme to partition 
precipitation (WRFMPP), a lapse rate does not need to be known. Furthermore, the WRFMPP  
model set up also does not require model calibration to partition rain vs. snow. This is critical, as 
calibrated model parameters require observations of SWE/snow depth and precipitation 
observations, which are not always available. We therefore recommend that future snow model 
development in maritime environments focus on the best microphysical scheme rather than 
partitioning schemes based on temperature or wet bulb temperature. Here we only evaluated the 
Thompson et al. (2008) microphysical scheme, but it is promising that in a comparison of 
microphysical schemes, the Thompson et al. (2008) was found to perform best in predicting 
snow across the cold continental climate of Colorado, USA (Liu et al. 2011). Furthermore, this 
microphysical scheme and model set up helped improve partitioning rain and snow at 
Snoqualmie Pass, WA, especially during cold air intrusions (Wayand et al. 2016a). We 
recommend that the snow depth data presented herein be used along with other OLYMPEX 
observations to evaluate how WRF performs with different physics, and hopefully build even 
better microphysical schemes that can be used in current and future climate studies. 
 
c. Model Sensitivity Unique to Warm Maritime Snow Environments 
 
 Throughout this study many non-trivial model-forcing decisions were made to improve 
model skill. We found one of the most sensitive decisions in this environment to be incoming 
longwave radiation. We evaluated empirical methods that performed well in Flerchinger et al. 
(2009) but found significant differences in model performance based on the empirical method for 
longwave radiation. We found that the Dilley and O’Brien (1998) clear sky method with the 
Unsworth and Montieth (1975) method for cloud correction had the lowest RMSE and mean 
difference when compared to observed incoming long wave radiation at the nearby Snoqualmie 
Pass, WA, energy balance tower. We note that this was also one of the most transferrable 
equations in Flerchinger et al. (2009). Other suggested transferrable longwave parameterizations 
from Flerchinger et al. (2009) simulated either too much or too little incoming longwave 
radiation. For instance, the Dilley and O’Brien (1998) clear sky method with Kimball et al. 
(1982) cloud correction, resulted in too little incoming longwave compared to the Snoqualmie 
Pass observations and therefore resulted in not enough melt in our model simulations of SWE 
and snow depth. 
 Another non-trivial decision was the choice in wind speed. In this region we found modeled 
turbulent fluxes to be significant energy input to the snowpack, because throughout the season 
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both the latent and sensible heat fluxes can be oriented in the same direction. Therefore, we 
found that using the only wind speed measurement within our study domain (Waterhole 
SNOTEL), despite being located far away from independent locations, offered better model 
performance than using a constant 2 m s-1. This was because observations of wind speed were < 
2 m s-1 on an hourly average during most of the ablation season. Therefore, using a constant 2 m 
s-1 wind speed resulted in a higher ablation rate compared to observations at independent 
locations because sensible and latent heat fluxes were often both simulated to be directed 
towards to snowpack. We recommend other models set up in a similar environment pay close 
attention to choices in incoming longwave radiation and wind speed. 
 
7. Conclusions 
 

PRISM and WRFMPP were both unbiased in predicting frozen precipitation across our twelve 
independent snow depth sites during WY 2016. However, significant individual errors occurred 
that resulted in a difference of up to over a meter (50-60%) in snow depth. The average error for 
both PRISM and WRFMPP was around 20%, but individual sites often had percent errors that 
differed less than 17% (see section 4 d). When output from WRF’s microphysical scheme was 
used to partition precipitation (WRFMPP) instead of the commonly used linear partitioning 
scheme based on wet bulb temperature (WRFLP), WRF performed similar to PRISM on average. 
The best model performance depended on the metric and the evaluation period. For instance, 
WRFMPP had a lower mean absolute difference when the error was presented as a percentage, 
while in contrast PRISM had a lower mean absolute error, indicating they both performed 
similarly in WY 2016, but that WRFMPP had larger errors at sites with more snow. Furthermore, 
WRFMPP outperformed PRISM during the largest storm (4 December 2015 – 23 December 
2015), while PRISM performed better over the entire OLYMPEX intensive observational period 
(1 November 2015 – 23 December 2015) and throughout WY 2015. Since PRISM is based on a 
precipitation climatology, it was not specifically designed to simulate extreme events like the 
December 2015 snowstorms, but PRISM over longer time-periods had individual errors balance 
out (Figure 5 and 6).  

Using the observations and the WRF simulations we found that PRISM may be under 
predicting snow depth near the crest of the Olympic Mountains (Figure 9) and therefore suggest 
that PRISM shift the boundary of the rain shadow further East in the Quinault Watershed and 
further into the Elwha Watershed. For instance, WRFMPP, which had the advantage of taking into 
account atmospheric synoptic conditions for individual storm events, indicated, along with the 
observations, that these areas generally experienced more snow.  

The WRFMPP modeling scenario is an attractive path going forward in snow hydrology for 
four reasons: 1.) The rain vs. snow threshold does not have to be calibrated, 2.) The lapse rate, 
which affects precipitation partitioning, does not have to be known a priori, 3.) WRFMPP was 
shown to perform well in a typical maritime winter and in a winter that experienced mean winter 
temperatures that are expected within the next century (IPCC 2013, Snover et al. 2013), making 
it a valuable modeling tool for climate studies that use dynamical downscaling, and 4.) WRFMPP 
has the potential to be run anywhere, even in watersheds with no observations or a gridded 
climatology. 

Microphysical schemes, regarding the magnitude and phase of precipitation are an active 
area of research (Jankov et al. 2009, Liu et al. 2011, Minder and Kingsmill, 2013) and previous 
studies have noted significant over- and under-accumulation of precipitation during individual 
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events (Anders et al. 2007, Minder et al. 2008), as shown here at a select few sites. We believe 
that these observations of snow, during WY 2015 and 2016, should be used with other 
OLYMPEX observations going forward to evaluate other microphysical schemes during various 
synoptic conditions and possibly develop new schemes so that we can better simulate the phase 
and magnitude of snow events, especially in this relatively warm maritime environment. 
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Appendix	1:	Adjusted	Model	Parameters:	
	

	
Model	Parameter	

	
Observed	
Relative	
Humidity	

	
	

	
q	from	WRF	
	

	

	
Observed	
Relative	
Humidity	
	

	
q	from	WRF	

Rain	vs.	Snow	Parameters	 -	 -	 -	 -	
tempCritRain	[°C]	 -1.0		 -1.0		 -1.0		 -1.0		

tempRangeTimestep	[°C]	 2	 2	 2	 2	

Albedo	Parameters	 -	 -	 -	 -	
albedoDecayRate	[s]	 500,000	 500,000	 500,000	 500,000	

	
Density	Parameters	

	
	Wayand	et	al.	
(2016)	(ρw)	

	

	
Wayand	et	al.	
(2016)	(ρw)	

	

	
Hedstrom	and	
Pomeroy	
(1998)	&	
Anderson	

(1976)	(ρHPA)	
	

	
Hedstrom	and	
Pomeroy	
(1998)	&	
Anderson	

(1976)	(ρHPA)	
	

newSnowDenMin	[kg	m-3]	 100	 100	 67.92	 67.92	
newSnowDenMult	[kg	m-3]	 50	 50	 51.25	 51.25	
newSnowDenScal	[°K]	 1	 1	 2.59	 2.59	
denScalOvrbdn	[kg-1	m3]	 0.02	 0.02	 0.023	 0.023	
tempScalOvrbdn	[°K-1]	 0.06	 0.06	 0.08	 0.08	

Table	A1:	Adjusted	model	parameter	decisions.	The	albedo	decay	rate	was	fit	to	observations	of	albedo	at	
Snoqualmie	Pass,	WA	(Wayand	et	al.	2015).		All	other	model	parameters	were	taken	as	default	values.	
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Appendix	2:	Model	Forcing	Variables	
	
	

Forcing Variable Source of Model Forcing Variable Reason 

 
 

 
Set 1 

 
Set 2 

 

 
Precipitation 
[kg m-2 s-1] 
 

 
Daily Observed Values 
Uniformly Distributed  

 

 
-- 

 
Observed 

 

 
Temperature 
[°K] 

 
Observed  

Corrected for using equation 1 
 

 
-- 

 
Biased SNOTEL 

Temperature Sensors 
 

 
Specific Humidity 
(q) 
[g/g] 

 
Observed Relative Humidity  

Converted to q using observed 
T and WRF Pressure 

 

 
WRF 

 
Possible Hysteresis and 

model biases 
 

 
Shortwave Radiation 
[W m-2] 

 
MTCLIM v. 4.2  

f(Tobs., RHObs., PptObs., Waterhole 
Wind Speed data) 

 

 
MTCLIM v. 4.2  

f(Tobs., RHWRF., PptObs., 
Waterhole Wind Speed data) 

 

 
Evaluated at Snoqualmie 

Pass for performance. 
Albedo decay rate also 

calibrated based on 
observed albedo. 

 
 
Longwave Radiation 
[W m-2] 

 
Dilley and O’Brien (1998) 

with Unsworth and Montieth 
(1975) Cloud correction  

f(Tobs. , RHObs. SW) 
 

 
Dilley and O’Brien (1998) 

with Unsworth and 
Montieth (1975) Cloud 

correction 
f(Tobs. , RHWRF. SW) 

 

 
Evaluated at Snoqualmie 

Pass for performance. 
 

 
Pressure 
[Pa] 

 
WRF  

 

 
-- 

 
 

 
Wind Speed 
[m s-1] 

 
Waterhole Observed Hourly 

Averaged Wind Speed  
 

 
-- 

 
Using a constant 2 m s-1 
wind speed caused too 

much melt during ablation 
season. Le+H in the same 

direction. 
 

Table A2: SUMMA Model Forcing Data used in the evaluation phase. “--“ indicates that the model forcing variable 
in set 2 is the same as it is in set 1. The major difference between set 1 and set 2 is the difference in specific 
humidity (q), which is then followed through into the calculation of shortwave radiation and longwave radiation. 
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Appendix	3:	Model	Configuration	
 
 
SUMMA model options used in all simulations are reported below in Table A3. See Table 1 of 
Clark et al. (2015b) for a complete description of SUMMA modeling options.  
 
Table A3. SUMMA model configurations used in all simulations.  
	
Summa 
Decision 
(short name) 

Summa Decision 
(definition) 

Default option 
used in study (short 
name) 

Default option used in study 
(definition) 

soilCatTbl soil-category 
dateset 

ROSETTA merged Rosetta table with 
STAS-RUC 

vegeParTbl vegetation 
category dataset 

USGS USGS 24/27 category dataset 

soilStress choice of function 
for the soil 
moisture control 
on stomatal 
resistance 

NoahType thresholded linear function of 
volumetric liquid water content 

stomResist choice of function 
for stomatal 
resistance 

BallBerry Ball-Berry 

num_method choice of 
numerical method 

itertive iterative 

fDerivMeth method used to 
calculate flux 
derivatives 

analytic analytical derivatives 

LAI_method method used to 
determine LAI and 
SAI 

specified LAI/SAI computed from green 
vegetation fraction and 
winterSAI and summerLAI 
parameters 

f_Richards form of Richard's 
equation 

mixdform mixed form of Richards' 
equation 

groundwatr choice of 
groundwater 
parameterization 

noXplict no explicit groundwater 
parameterization 

hc_profile choice of 
hydraulic 
conductivity 
profile 

constant constant hydraulic 
conductivity with depth 

bcUpprTdyn type of upper 
boundary 
condition for 
thermodynamics 

nrg_flux energy flux 

bcLowrTdyn type of lower zeroFlux zero flux 
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boundary 
condition for 
thermodynamics 

bcUpprSoiH type of upper 
boundary 
condition for soil 
hydrology 

liq_flux liquid water flux 

bcLowrSoiH type of lower 
boundary 
condition for soil 
hydrology 

drainage free draining 

veg_traits choice of 
parameterization 
for vegetation 
roughness length 
and displacement 
height 

CM_QJRMS1998 Choudhury and Monteith 
(QJRMS 1998) "A four layer 
model for the heat budget..." 

canopyEmis choice of 
parameterization 
for canopy 
emissivity 

difTrans parameterized as a function of 
diffuse transmissivity 

snowIncept choice of 
parameterization 
for snow 
interception 

lightSnow maximum interception 
capacity an inverse function of 
new snow density 

windPrfile choice of wind 
profile through the 
canopy 

logBelowCanopy logarithmic profile below the 
vegetation canopy 

astability choice of stability 
function 

mahrtexp Mahrt (1987) exponential 
function 

canopySrad choice of canopy 
shortwave 
radiation method 

CLM_2stream Community Land Model 

alb_method choice of albedo 
representation 

conDecay 
 
 

constant decay rate (e.g., 
BATS approach, with 
destructive metamorphism + 
soot content) 

compaction choice of 
compaction 
routine 

anderson semi-empirical method of 
Anderson (1976) 

snowLayers choice of method 
to combine and 
sub-divide snow 
layers 

CLM_2010 CLM option: combination/sub-
division rules depend on layer 
index 

thCondSnow choice of thermal 
conductivity 

jrdn1991 Jordan (1991) 
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representation for 
snow 

thCondSoil choice of thermal 
conductivity 
representation for 
soil 

funcSoilWet mixture of constituents 

spatial_gw choice of method 
for the spatial 
representation of 
groundwater 

localColumn separate groundwater 
representation in each local 
soil column 

subRouting choice of method 
for sub-grid 
routing 

timeDlay time-delay histogram 

	



www.manaraa.com

	 38	

Appendix 4: LiDAR Snow Depth comparison to Time-Lapse Snow Depth  
 

A comparison on 8-9 February 2016 between a 3600 m2 area around the snow depth pole 
from the LiDAR and our snow depth pole measurements showed that both measurements 
generally agree or are within each other’s interquartile (ASO) or uncertainty range (Snow Depth 
Poles) (Figure A1). At many sites such as Mount Seattle East, Mount Seattle West, and West of 
Lake Lacrosse, the difference from the snow depth pole and the median ASO value was less than 
15 cm. At other sites, more significant differences appeared. For instance, at Mount Hopper, 
camera images showed a significant snowdrift, which was formed due to preferential deposition 
of precipitation. Since the snow depth poles were located outside the snowdrift the median ASO 
value was higher than the snow pole measurement by 83.5 cm in February 2016 and 172.9 cm in 
March. In contrast to this, at Black and White West the ASO snow depth maps indicated that our 
snow depth poles were located within a snowdrift, and therefore the median ASO value was 41.8 
cm lower in February and 59.5 cm lower in March when compared to the snow depth pole 
measurement. 

At these two sites we found that the median ASO value from a larger spatial area (>3600 m2) 
was more similar to the median ASO value from the 3600 m2 area than it was to the snow depth 
pole measurement. This indicates to us that the median ASO value within a 60-m bounding box 
was a better representation of the snow within this region than the snow depth poles. 
Furthermore, by March many snow depth poles contained significant uncertainty in their 
measurements because they became bent or buried with snow. Therefore, we chose to compare 
our model simulations with different sources of precipitation, on an annual basis, to the median 
March ASO value within a 60-meter bounding box, rather than the snow depth pole 
measurements. 
 

	
Figure	A1:	The	ASO	LiDAR	distribution	of	snow	depth	values	within	a	60-meter	bounding	box	(3600	m2)	and	
the	snow	depth	pole	measurements	with	their	associated	uncertainty	on	8-9	February	2016.	Sites	that	do	not	
have	blue	bars	(dotted	lines)	shown	are	sites	with	no	snow	depth	measurement	at	this	time	because	the	poles	
became	buried	with	snow.	
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1. Introduction 

 
Recently, time-lapse photography has been proposed as an innovative way to measure snow 

depth (Floyd and Weiler, 2008, Parajka et al. 2012, Gavelmann et al. 2013, Fortin et al. 2015). 
The advantage of time-lapse photography for measuring snow depth is that it is inexpensive, 
costing at a minimum of around $150 per location, and that it can provide a time-series of snow 
depth as long there is sunlight. It also has a low impact on the environment, allowing for it to be 
set up in remote locations and in protected wilderness areas. Furthermore, time-lapse 
photography can be installed in the summer months and does not require maintenance during the 
fall, winter, or spring months. 

Published methodologies and associated uncertainties to obtain snow depth from photographs 
vary. For instance, Nievinski and Larson (2014) read the pole “manually,” by looking at pole 
markings relative to snow depth and found the uncertainty in their measurements to be ± 3 cm. 
Parajka et al. (2012) developed a fully automated algorithm that identifies and counts the number 
of evenly spaced markers on their snow depth pole. Floyd and Weiler (2008) were able to create 
an automated linear mask that identified the number of pixels between the top and bottom-most 
visible part of the snow depth pole. This mask was then used to determine the length represented 
by a single pixel, which was then multiplied by the total number of pixels between the top of 
bottom-most visible part of the pole to determine the snow depth. 

Gavelmann et al. (2013) proposed a similar methodology to Floyd and Weiler (2008) but 
instead of using a linear mask to determine the top and bottom of the pole, they manually 
selected the pixel coordinates at the top and bottom. However, Gavelmann et al. (2013) noted a 
consistent offset in their measurements compared to manual measurements as snow depth 
increased. Therefore, they resorted to manual measurements, similar to Nievinski and Larson 
(2014) for the rest of their study.  

The remainder of this chapter is organized as follows: In section 2 we further describe our 
installation set up in the Olympic Mountains for the study in Chapter I and introduce the errors 
that we came across in water year (WY) 2015 and 2016. In Section 3 we describe a snow depth 
measurement technique similar to that of Garvelmann et al. (2013) but that also accounts for 
perspective distortion.  In section 4 we show the results from an evaluation of this tool. In section 
5 we describe how to angle correct for bent poles and provide uncertainty with this measurement. 
In Section 6 we provide suggestions on how to set-up a time-lapse photography network.  
 

2. Installation 
 

A total of around 1000 kilometers were hiked amongst five people who carried the 
installation supplies within or on their backpacks (Figure 1).  
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Figure 1: Colin Butler, Max Mozer and Justin Pflug (from right to left) carrying the necessary equipment to 
measure snow depth in remote locations during the OLYMPEX campaign. 
 
Backpack weights ranged from 27 to 32 kilograms. The entire installation process took around 
four weeks to complete, making labor the most significant financial cost of a snow depth 
measurement network. All installation equipment is shown in Figure 2. We note that our camera 
network did not provide data in real-time, making annual maintenance trips necessary. 
 

 
Figure 2: An example of the supplies that were installed at a snow depth measurement site. Note that in WY 2016 
red tape was replaced with neon orange/pink tape as seen in Figure 1. 
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Cameras were strapped to trees roughly 2.8 to 6.8 m above the ground depending on the 

site’s elevation and the expected amount of snowfall. Historic snow course measurements in this 
area reported snow depth values of up to 7.5 m. Since the cameras were placed high in the tree, 
wooden shims were used to tilt the camera into view of the snow depth poles. The declination 
angle from a plane that runs normal to the surface ranged from 0º to 33º and was dependent on 
the distance from the pole to the camera, the local topography, and the height of the camera in 
the tree. Since the cameras were placed high in the trees, they were subject to movement 
associated with tree sway. 

Snow poles ranged in height from 1 to 6 m depending on elevation and anticipated snow 
depth. In WY 2015, black tape marks were placed every 5 cm, and red tape marks were placed 
every 50 cm. Poles were designed to allow the person processing the data to count the number of 
black tape marks from the red tape closest to the top of the snowpack. However, we found that 
when the camera was placed at approximately 11 m from the pole, it became nearly impossible 
to distinguish the red tape from the black tape, and thus the person processing the data could no 
longer manually read the snow depth poles to obtain a manual measurement without counting 
every piece of black tape, every hour there was an image. To address this issue we developed a 
semi-automated method for measuring snow depth from time-lapse photographs. This method is 
described in section 3, and an evaluation is shown in section 4.  

In WY 2016 we corrected for this by placing neon orange and neon pink tape over the red 
tape. This allowed for the 50 cm marker to maintain its true color in low light conditions and for 
the poles to be manually read by eye similar to Nievinski and Larson (2014). However, in WY 
2016 we had substantially more snow than in WY 2015, and the poles became bent or buried due 
to snow creep. We therefore developed a method that allowed us to correct for the angle of the 
poles (section 5). We note that when installing our snow depth poles, we specifically looked for 
areas that were flat. However, in environments with deep snowpacks, even slight slopes can 
cause the snow to creep. 

 
3. WY 2015 – Semi Automated Method 
 

First we identified the coordinates for the bottom-most visible part of the pole by zooming in 
on the image. If there was no snow, then we flagged this image as having no snow. At these 
times this provided a measurement of truth and allowed us to evaluate errors in our calibration. 
After we identified the bottom of the pole in all of the images, we repeat, for the top part of the 
pole. Then the number of pixels from the bottom of the pole to the top of the pole was calculated 
using the distance formula (1). 

 
𝑃𝑖𝑥𝑒𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (𝑥! − 𝑥!)! + (𝑦! − 𝑦!)!                                        (1) 

 
where xt and xb correspond to the x-coordinates for the top and bottom of the pole, respectively. 
Similarly, yt and yb correspond to the y-coordinates at the top and bottom of the pole, 
respectively. 

Lastly, we calibrated the measurements so that the pixel distance between the top and bottom 
of the pole could become a snow depth measurement. Our program was unique because it 
calibrated the measurements by identifying the pixel coordinates associated with the pole’s tape 
marks from the bottom portion of the pole to the top of the pole (Figure 3 a.). The blue dots show 
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the location of where the user clicked to identify the pixel coordinates of the tape marks for the 
bottom 150 cm on an example image. These clicks generated a look-up table, which associated 
the pixel distance to the known measurement on the pole. For instance, the orange arrows in 
Figure 3 a. show that 100 cm from the bottom is associated with a pixel distance of 1128.3 pixels 
from the top of the pole. Therefore an image that produced a distance close to 1128.3 pixels from 
the top of the pole was assigned a snow depth measurement of 100 cm. To refine our 
measurements we linearly interpolated between each tape mark to produce a look-up table that 
had pixel distances associated with 0.5 cm intervals.  

To evaluate camera movement throughout the year we superimposed other calibration 
markers onto the image from September 13, 2014. For instance, the other markers correspond to 
the same black tape marks but on different dates (see legend). This shows that the camera was 
not fixed, and that the camera moved randomly with the tree throughout the winter due to 
interactions with the wind and snow. Furthermore, it appeared that the camera began to slide 
down the tree later in the season. Notice that the same movement was also found at the top of the 
pole and not just the bottom (Figure 3 b.). 

 

 
Figure 3: a.) Calibration locations at various times in the year along the bottom 150 cm of a 400 cm pole. 
Background image was taken on September 13, 2014 at 10:00 AM PDT. Orange arrows indicate the height above 
the ground for 0, 50 and 100 cm markers along the snow depth pole and the associated number of pixels from the 
top of the pole. b.) The location of the top of the pole on the same dates. c.) Empirically found differences if 
distortion is not corrected for from the true snow depth based on a 400 cm snow depth pole. 

 
The look-up table allowed for the program to empirically correct for perspective distortion, 

which was often found on cameras that had a declination angle of more than 10º. We derived 
differences from using a single length per pixel instead of the lookup table to calibrate the pixel 
distance calculations to snow depth measurements. These empirically-derived differences were a 
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function of declination angle and the snow depth. These were found based on lab experiments, 
where we varied the camera declination angle and then used a single length per pixel value, as in 
Garvelmann et al. (2013), to calibrate our measurements at 5 cm intervals. We then subtracted 
these values from the known measurement on the pole. We found when the camera has a 30º-
declination angle that using a single length per pixel value will cause the measured snow depth to 
be approximately 20 cm less than the true snow depth at 200 cm. As the declination angle 
decreases or snow depth decreases, distortion has less of an impact (Figure 3 c.). The results 
shown here likely explain the biases that Garvelmann et al. (2013) experienced in their study. 

When we conducted the semi-automated process described above, it became apparent that 
many images were not visible due to condensation, while other images displayed physical 
conditions that led us to make a series of subjective decisions (Figure 4). To address theses 
issues, our program flags each type of subjective measurement (Figure 4 a-d) and also flags 
images that were not visible due to fog or condensation on the camera.  

We believe the remaining uncertainty within this technique comes from random tree 
movement throughout the year as well as tall poles (>=5 m) bending in the wind. Our program 
asks the user to produce multiple calibrations and use the measurements for when there isn’t any 
snow present. Here the program calculates a mean difference throughout the year that is near 
zero centimeters. To avoid poles that bended throughout the year, we avoided six-meter tall poles 
that did not have the support from a t-stake or snow (in the low snow year) and thus moved with 
the wind. 

 

 
Figure 4: a.) Melt hole during the ablation season can increase the uncertainty. b.) Snow on top of the pole could 
cause an increase in 5-10 cm, depending on the height of the snow on top of the pole, and whether the user 
recognized that this was snow. Note that the image on the left, without the orange circle, had no snow on top of the 
pole. c.) Similar to the melt hole, the users interpretation could cause a 5-7.5 cm difference in measured snow depth. 
This differs from the melt hole in that this is during a period of snow accumulation, not melt. d.) Here, there is no 
snow at the bottom of the pole but there is still snow in the area. The user should determine whether the pole was 
designed for a point measurement or if the time-lapse cameras were designed to measure snow depth in the visible 
domain. 

 
3. WY 2015 Semi Automated Method Results 

 
We used snow depth measurements from Mount Seattle West and Black and White East to 

compare images that were processed by eye to images that were processed using the semi 
automated method (Figure 5). We selected these two time-series because they could be processed 
“manually,” where as the remaining images were taken by cameras located too far from the pole 
for the red tape marks to be identified. These two cameras had a declination angle of 32º and 10º, 
respectively, which allowed us to evaluate our calibration method. 
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The blue violin plots show the relative frequency of using the semi-automated method to 
receive a given mean difference from an eye measurement (Figure 5). Red violin plots show the 
relative frequency of using the semi-automated method to estimate zero snow depth on the dates 
when we said there was no snow. Blue violin plots therefore only analyze times when there was 
snow on the ground. The distribution of different mean differences comes from different 
combinations of a given number of calibrations. For example, at Black and White East, there 
were 13 total calibrations. We chose to average 7 of the 13 calibrations. There were thus 3432 
unique combinations of how we could average the 7 of 13 calibrations. As the number of 
calibrations is increased the likelihood of any bias in the snow depth measurement from the 
semi-automated method decreases to ~ 0 cm. The program continued to calibrate the snow depth 
measurements based on randomly selected images when there was no snow on the ground until 
the mean difference from all calibrations was less than 1 cm. 

 

 
Figure 5: Top pannel) Violin plots demonstrating that as the number of calibrations is increased the likelihood of  
having any bias in our measurements from the semi-automated program is decreased. Bottom Pannel: Individual 
differences from the semi-automated tool snow depth measurement or zero if there was no snow. 
 

The bottom panel (Figure 5) shows the individual differences from zero when there was no 
snow (red) and the differences from an eye measurement when there is snow (blue) after 
averaging together the optimal number of calibrations (14 at Mount Seattle West and 13 at Black 
and White East). The black dots show the individual differences that arise from each calibration. 
Magenta dots show the results from using a single length per pixel value similar, to Garvelmann 
et al. (2013). Note that large differences appeared only when the snow depth was significant 
(Late December – Mid January) and when we had a higher camera declination angle.  This is 
consistent with findings from the lab experiment that derived differences from known 
measurements on the pole (Figure 3.c.).  
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Therefore the calibration process, presented herein, was essential and the more calibrations 
the user did, the higher probability that the mean difference of the true measurement was close to 
0 cm (Figure 5). The mean difference for when there was snow was 0.83 cm and 0.18 cm for 
Mount Seattle West and Black and White East, respectively. The standard deviation for when 
there was snow was 1.92 cm and 1.79 cm for Mount Seattle West and Black and White East, 
respectively. We therefore determine that the 95% confidence interval in the semi-automated 
method was  ± 4 cm. This uncertainty was only ± 1 cm greater than that of Nievinski and Larson, 
(2014) who processed time-lapse images by eye. The red dots, which show the calculated snow 
depth measurement when there wasn’t any snow was forced to zero in practice but was shown to 
exemplify that there are random errors that are similar in nature to the ones that appeared when 
there was snow. 
 

 
Figure 6: Evidence that this technique corrects for the perspective distortion, which can occur if only a single length 
per pixel value was used. For both the corrected and not corrected images 14 random calibrations were done and the 
mean was taken. The second plot shows the difference from eye for both techniques when there was snow. Large 
differences from an eye measurement occur when snow depth increases and distortion is not accounted for (Blue). 
The differences greater than 5 cm are systematic errors stemming from the methodology that used a single length 
per pixel. 
 
5. WY 2016 – Angle Corrections and Associated Uncertainty 

a.  Measuring pole angles and computing angle corrected snow depth 
 

Many snow depth poles upon retrieval in WY 2016 were bent due to snow creep (Figure 7).  
This resulted in inaccurate measurements of snow depth when measuring the poles by eye.  To 
improve snow depth measurements, it was necessary to account for how the poles were bent at 
different times throughout the year.  
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Figure 7: Example time-lapse image of the view from Camera 2 at Mount Seattle East 

 
In WY 2016, images of the bent snow depth poles were processed to retrieve raw snow depth 

measurements by counting tape marks from the top of the pole. Afterwards images were 
reviewed again to quality control any erroneous measurements. Then the images were looped 
through to provide the pixel coordinates from the top and bottom most visible part of the pole. 
Using the determined coordinates (Figure 7), an estimated angle for the pole was found (2): 
 
                                    𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑙𝑒 𝑎𝑛𝑔𝑙𝑒 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 =  tan!! !!!!!

!!!!!
                     (2) 

 
With the estimated pole angle, we corrected the snow depth measurement (3): 
 

𝑎𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑠𝑛𝑜𝑤 𝑑𝑒𝑝𝑡ℎ = 𝑟𝑎𝑤 𝑠𝑛𝑜𝑤 𝑑𝑒𝑝𝑡ℎ ∗ sin (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑜𝑙𝑒 𝑎𝑛𝑔𝑙𝑒)    (3) 
 

In this process, we made three assumptions when interpreting camera images. The major 
assumption was that the poles were bent at a constant angle, meaning the pole’s angle from 
vertical under the snow was identical to the angle observed above the snow.  This assumption 
may not hold true at higher pole angles (>50°) when the pole likely bends with curvature rather 
than along a straight line.  We also made the assumption that the camera provided a constant 
fixed frame of reference when capturing images of the poles.  Lastly, we made the assumption 
that the poles were bent in the same azimuthal direction, the entire year.  The azimuthal direction 
was determined when the time-lapse camera images were retrieved. However, in some cases the 
poles were standing straight, pointed towards zenith when we arrived. Here, we estimated the 
azimuth direction that the poles were bent using the measured azimuth from the cameras and by 
using time-lapse images from multiple cameras to determine the azimuthal direction the pole was  
bent towards. This led to a large source of uncertainty in the estimated azimuthal direction at 
some sites. Sites where this was estimated were documented and included in the metadata. 
 

Estimated Pole Angle
(equation 2)

(xt , yt)

(xb , yb)

x

y

Example Time-Lapse Camera Image

Raw Snow 
Depth Measurement
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 b. Quality Controlling the Data 
 

False accumulation events occurred when correcting for the angle of the snow depth pole 
during the ablation season.  False accumulation events occurred when the pole became less bent 
but the actual snow depth remained constant, meaning the algorithm saw a straighter pole and 
therefore the measured snow depth increased. Since snow depth was not increasing at that time 
in reality, the false accumulation events were quality controlled.  This involved selecting two 
points in the time series that were outside the false accumulation event.  From here, the ablation 
rate between these two points from the raw data time-series was translated to fit the time series 
that had corrected for snow depth. 
 
c. Creating Uncertainty Bounds for our final data set.   
 

There are two different sources of uncertainty in the snow depth measurements.  The first 
source of uncertainty was from measuring the poles by eye.  Since the poles had tick marks every 
5 cm, all of the non-zero measurements were subject to a ± 3 cm uncertainty, to account for 
human error and inherent uncertainty in the measurement itself (Figure 4, a&c).  

The second source of uncertainty came from the methods used to angle correct the poles.  
When a pole was bent due to snow creep, it bent in a certain azimuthal direction (Figure 8). 

 

 
Figure 8: Conceptual diagram of the azimuthal directions for the camera set up in Figure 7. 

 
To determine how bent a pole was at a given time, the pole should ideally be viewed from an 

angle that is orthogonal to the direction the pole is bent.  Due to the setup of the snow depth 
measurement sites, the view of the poles were limited to angles at which the cameras were 
pointed.  This setup resulted in most cameras not being able to fully capture the bend of a pole 
from an orthogonal view. We calculated the number of degrees the camera was from orthogonal 
(DFO) as follows (4 & 5): 

 
             𝐷𝑖𝑓𝑓𝑒𝑟𝑛𝑐𝑒 𝑖𝑛 𝐴𝑧𝑖𝑚𝑢𝑡ℎ = 𝐷𝐼𝐴 = 𝑃𝑜𝑙𝑒 𝐴𝑧𝑖𝑚𝑢𝑡ℎ − 𝐶𝑎𝑚𝑒𝑟𝑎 𝐴𝑧𝑖𝑚𝑢𝑡ℎ               (4) 

 

N
View From Above

azimuthal angles

camera 
azimuthal

 angle

camera 2
(C2) 

C1 
azimuthal

angle = 270°

camera 1 
(C1)

33° = pole 
azimuthal angle

C2 
azimuthal

angle = 10°
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                      𝐷𝐹𝑂 =

90°− 𝐷𝐼𝐴, ,        0° < 𝐷𝐼𝐴 < 90°          
𝐷𝐼𝐴 − 90° ,       90° < 𝐷𝐼𝐴 < 180°    

    270°− 𝐷𝐼𝐴,       180° < 𝐷𝐼𝐴 < 270°      
𝐷𝐼𝐴 − 270°,       270° < 𝐷𝐼𝐴 < 360°

                                (5) 

 
In order to quantify the potential error from not having an orthogonal view of the bent poles, 

a lab test was performed.  In this test, a pole was set up at a known angle so that the pole angle 
and azimuth at which it was leaning were controlled.  Images of the pole were taken from 
different camera view angles (Figure 9). 

 
 

 
Figure 9: Conceptual figure of the lab experiment from an oblique view. 

 
In the lab experiment, the camera view angle started at 0 degrees from orthogonal 

(orthogonal to the pole azimuth angle) and ended at 90 degrees from orthogonal (directly in line 
with the pole azimuth angle), using 10 degree increments. Images were repeated going from 90 
degrees to the opposite 0 degrees from orthogonal, so that we had two images for each azimuth 
angle. The angle in each image was then estimated (2), and the difference from the actual angle 
was computed and plotted against camera azimuth angle (Figure 10).  This process was 
performed for pole angles of 50-75 degrees in 5-degree increments (with 90 degrees being a pole 
pointed towards zenith). The 50-75 degree range was chosen because when the pole was angled 
at greater than 75 degrees, the pole was almost vertical, so the pole angle had a negligible impact 
when measuring the snowpack.  When a pole was bent at more than 50 degrees, the assumption 
that the pole was bent at a constant angle, above and below the snow surface, appeared to be 
false based on visual inspection. Therefore the data during these periods was not used in our 
analysis.   
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Figure 10: Difference in estimated clicked angle (pole angle estimate from clicking minus actual angle) vs. the 
camera azimuth angle. Each line or series of data points represents a different pole angle.  

Errors in estimated angles were minimal when the camera view angle was within 20 degrees 
of orthogonal from the direction at which the pole was bent.  However, beyond 30 degrees, there 
was a linear trend in the errors for each unique pole angle from 50-75 degrees. When the pole 
angle was greater than 75 degrees, the uncertainty from the pole angle was taken to be 0 cm as 
the uncertainty was similar to the already accounted for natural processing uncertainty (±3 cm).  

When the pole angles were less than 75 degrees and the camera view angle was not within 25 
degrees of an orthogonal view of the pole, we estimated the uncertainty using the results from 
the lab experiment. We developed a set of least squares regressions (Table 1) between the 
degrees the camera view angle was from orthogonal (Figure 9) and the estimated pole angle 
clicked (2) for each actual pole angle (Figure 11).  
 
Actual Pole Angle Regression Equation R2 

75° EAA = 0.19 * DFO + 70.17 0.91 
70° EAA = 0.21 * DFO + 66.93 0.93 
65° EAA = 0.26 * DFO + 70.00 0.94 
60° EAA = 0.33 * DFO + 55.22 0.93 
55° EAA = 0.36 * DFO + 51.93 0.94 
50° EAA = 0.41 * DFO + 46.81 0.94 

ECA = Estimated Actual Angle & DFO = Degrees From Orthogonal 
Table 1: Fitted least squares regressions between the estimated angle clicked and the degrees the camera is from 
orthogonal. 
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Figure 11: Linear relationships between the estimated angle clicked (2) and the DFO developed from lab 
experiments for each known pole angle (50-75 degrees – see legend). Note that when the camera view angle is 0 
degrees from orthogonal the pole angle is near equal to the estimated pole angle.  

Once the regression lines were determined, it was possible to estimate the actual pole angle for a 
given moment in time. The known DFO was plugged into each linear regression to generate a 
series of estimated actual pole angles.  The absolute value of the difference between the 
estimated clicked angle (2) and the values from each regression line at the given DFO was taken. 
Then the two smallest absolute differences were stored.  This represented the two regression 
lines between which the estimated clicked angle fell for a given DFO (Figure 11). We then 
linearly interpolated between the two regression lines to determine a more refined (<5° 
increment) estimated actual pole angle, from which, we estimated the correction error factor (6).  

 
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 =
sin 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 − sin 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑛𝑔𝑙𝑒 .                   (6) 

 
The uncertainty was then estimated (7) 
 

𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 ∗ 𝑟𝑎𝑤 𝑠𝑛𝑜𝑤 𝑑𝑒𝑝𝑡ℎ                             (7) 
 
The estimated uncertainty was then added to the ±3 cm from human uncertainty to create a total 
uncertainty. The total uncertainty for each individual pole is shown in Figure 4 of Chapter I of 
this thesis. We reiterate from Chapter I that the uncertainty in snow depth was at many times 
significant (>±15 cm). Therefore we did not use angle-corrected data when evaluating estimates 
of frozen precipitation. Instead we used the corrected snow depth measurements and their 
associated uncertainty as a guide for the snow depth accumulation throughout the year (gray 
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shading in Chapter I, Figure 4). We did use the uncertainty and corrected snow depth 
measurements to compare with the interquartile range from the Airborne Snow Observatory data 
(Chapter I, Appendix 4). 

 
6. Discussion and Conclusions 

We presented the methods that we used to measure the snow depth poles for both WY 2015 
and 2016 during the OLYMPEX ground validation campaign.  We found that previous studies, 
which used a single length per pixel value in automated snow depth readings from time-lapse 
photography may suffer from significant errors depending on the snow depth and the camera 
declination angle. We also found a dramatic improvement in the ease of measuring snow depth 
from time-lapse cameras when using neon pink and orange tape on our snow depth poles instead 
of red tape. This was because the red tape became indistinguishable from the black tape in low 
light conditions in instances where the camera was placed far (more than ~11 m) from the pole. 
Lastly, we demonstrate that snow depth poles can become significantly bent throughout the 
winter due to snow creep. This translates into a large uncertainty range at many locations 
because the camera azimuth angle was not orthogonal to the direction that the pole is bent. We 
therefore, despite these efforts, did not use the snow depth measurements to evaluate 
precipitation estimates in WY 2016 once the poles became bent. In WY 2015 the poles did not 
become bent because snow depth was abnormally low. 

We suggest that future time-lapse photography networks for snow depth find locations that 
are protected from snow creep and use orange/pink tape over the red tape. We also suggest the 
use of fully automated methods, as manually measuring snow depth from time-lapse images is a 
time consuming process. Preliminary work suggests using a fully painted orange pole in order to 
distinguish the pole from the background environment. In our setup the background was often 
black (trees) or white (snow) making it difficult to visualize or detect any contrast between 
certain segments of the pole and the background. Furthermore, it is critical that the cameras have 
a declination angle of less than 10°, making it difficult to use the orange poles in our study, as 
these measurements would need to be corrected for perspective distortion and (Section 3 and 4) 
for the angle at which the poles were bent (section 5). Using orange poles thus poses a challenge 
for deep snowpacks, where the cameras are forced to be placed high in a tree and are therefore 
angled down to ensure the poles are in the camera’s field of view. 
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